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In this experiment we used numerical methods to simulate the two-dimensional Ising Model in a 100 by
100 spin lattice. Using the Metropolis algorithm to select a sample of microstates from the system, we
estimated the thermodynamic averages of energy, magnetism and spin correlation at a range of temperatures.
Measuring these quantities and the derived quantities heat capacity, magnetic susceptibility and correlation
length, we were able to observe the phase-transition-like behaviour of this finite system, estimating the critical
temperature (Tc) and the critical exponents. While our estimates for Tc were in close agreement with the
theoretical value for an infinite lattice, our estimates of the critical exponents and demonstration of power-law
behaviour near the critical temperature were less accurate. Effects from the finite-size of our lattice as well
as biases introduced by our sampling method may be able to account for these discrepancies.

I. INTRODUCTION

A. Background

The Ising Model is a simplified statistical mechanical
model of ferromagnetism. It involves a d-dimensional
(where d can be arbitrarily high) lattice of particles which
each have a spin of ±1. The model was invented in
1920 by the German physicist Wilhelm Lenz. The one-
dimensional version, which consists of an infinite line
of adjacent spins, was solved analytically in 1925 by
Ernst Ising1. It is much more difficult to find an an-
alytic solution for the thermodynamic properties of a
two-dimensional Ising lattice, but in 1944 Lars Onsager
solved this case analytically, and also showed the exis-
tence of a phase transition2. While Onsager’s equations,
which are referred to later on in this paper, are true for
an infinite-size lattice, we can only perform a numerical
simulation on a finite-size lattice. Theoretically, we don’t
expect a finite-size system to show any phase transition,
so a large part of this experiment is to verify how well
the Onsager equations apply to a large but finite two-
dimensional Ising Model.

B. The Ising Model

For our two-dimensional lattice of spins, the Hamil-
tonian of the system depends on the coupling of each
individual particle’s spin with nearby particle spins (we
will assume it interacts only with its nearest neighbours),
as well as coupling with an externally applied magnetic
field. Specifically, the Hamiltonian can be written as

H = −J
∑
〈i,j〉

σiσj −B
∑
i

σi (1)

where J represents the strength of nearest neighbour in-
teractions, 〈i, j〉 denotes a sum over all neighbour pairs
in the lattice, σi = ±1 is the spin of the particle at the
ith lattice position, and B is the strength of the applied

magnetic field. In this experiment, we are looking at
the case where there is no external magnetic field, so the
Hamiltonian reduces to the first term in 1.

If we specify that the spin lattice is to be kept at ther-
mal equilibrium (in contact with a thermal reservoir),
then we can use the canonical ensemble to model the
statistical behaviour of the system. In the canonical en-
semble, the probability that the system occupies a mi-
crostate si with energy per unit site Ei is given by

P (si) =
e
− Ei
kBT

Z
(2)

where

Z =
∑
i

e
− Ei
kBT (3)

is the sum of all Boltzmann factors over every possible
microstate. Z is called the canonical partition function.
Since Z tells us the relative likelihoods of individual mi-
crostates occurring, if we determine Z we can use it to
calculate the expected values of many thermodynamic
variables. We can express the thermodynamic average of
the energy of the system at a particular temperature as

〈E〉T =

∑
iEie

− Ei
kBT

Z
(4)

and the expected magnetization is

〈M〉T =

∑
iMie

− Ei
kBT

Z
(5)

Here, Mi is the magnetization per unit site of the mi-
crostate si. Moreover, manipulating Z also allows us to
calculate the heat capacity (cv) and the magnetic sus-
ceptibility (χ) from the variance of the expectations of E
and M respectively:

cv =
1

(kBT 2)
(〈E〉T 2 − 〈E2〉T ) (6)
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χ =
1

(kBT 2)
(〈M〉T

2 − 〈M2〉T ) (7)

However, apart from trivially small lattice sizes, it is
impractical to calculate the full partition function, be-
cause the number of microstates is so large. Therefore, it
is necessary to take a representative sample of the possi-
ble microstates of a system. From a representative sam-
ple, we can estimate the thermodynamic averages of en-
ergy and magnetization at a particular temperature, and
then use the relationships in eq. 6 and eq. 7 to esti-
mate cv and χ. To do this, we will use a form of Monte
Carlo sampling method. Before discussing this, we will
introduce the phenomenon of primary interest to this ex-
periment: phase transitions.

C. Phase Transitions and the Critical Temperature

In thermodynamics, the term phase transition denotes
a sudden change in the physical properties of a system.
In the absence of an external magnetic field, we expect
that the spins in our lattice will try to align themselves
with their neighbours, as 1 tells us that when the nearest
neighbours are all aligned, the energy of the system is
minimized. At very high temperatures, however, where
the size of the thermal fluctuations is much greater than
the strength of the nearest neighbour interactions, we
expect the spins will be arranged randomly (meaning M
is 0). It is only at low temperatures where the nearest
neighbour interactions between spins will dominate that
we expect to see the alignment of all spins in the system.
Here, M will be either ±N2. Somewhere in between
these two extremes, as we decrease the temperature of
the system, we expect to see |M | rise sharply above 0
and start moving toward N2. This is a phase transition,
and the temperature at which this occurs is known as Tc,
the critical (or Curie) temperature.

At Tc we expect there to be a sharp rise in M and E of
our system. Since χ and cv represent the first derivatives
of M and E with respect to temperature, we expect to
see a divergence in the behaviour of these quantities at
Tc. Since the derivative of E is showing a divergence at
Tc, this is known as a second-order phase transition. By
graphing these four quantities against temperature and
observing the temperature at which there is a sharp rise
(for M and E), or the temperature at which there is a
discontinuity (for χ and cv), we can estimate Tc for our
system.

II. METHODS

A. Monte Carlo Sampling with the Metropolis Algorithm

Theoretically, it possible to obtain all relevant thermo-
dynamic variables about an N×N Ising lattice (for finite
N) by simulating every possible microstate of the sys-
tem and calculating the relevant variables for that state.

However, even for relatively small N this is computation-
ally impossible. For a 100×100 lattice, for example, there

are on the order of 2100
2 ≈ 103010 distinct microstates.

Therefore, we need some way to to take a representative
sample of a manageable size of the microstates of our
system.

In this experiment, we used the Metropolis algorithm,
a type of Markov Chain Monte Carlo sampling method.
The Metropolis algorithm uses the fact that microstates
with a higher total energy are less likely to occur than mi-
crostates with a lower total energy. The algorithm takes
a modified random walk through the space of microstates
of our system. From any given microstate during the ran-
dom walk (call the current state sc), the next microstate
is chosen either as a repeat of the current microstate (sc)
or as a new microstate. From each microstate sc, a possi-
ble next microstate sc′ is created by flipping a given ratio
of the spins in the whole system. The spins to be flipped
are chosen randomly, and the system decides to move to
state sc′ if and only if sc′ has a higher occurrence proba-
bility than sc. From the Boltzmann probabilities for the
canonical ensemble we know that the probability of the
system occupying a microstate s is proportional to

P (s) ∝ e−
Es
kBT (8)

The algorithm decides whether or not to transition to
sc′ based on the ratio of the probabilities of the two states
occurring:

a =
P (sc′)

P (sc)
=
e
−
E
c′

kBT

e
− Ec
kBT

(9)

If this ratio is greater than 1 (meaning sc′ has a lower
energy than sc), then the system will always transition.
If this ratio is smaller than 1, the system will transition
to sc′ with probability a, and will remain at sc with prob-
ability 1− a.

Using these selection rules, the Metropolis algorithm is
able to sample a wide range of randomly-generated mi-
crostates, among which the proportion of times that cer-
tain microstates are selected is proportional to the prob-
ability of those microstates occurring. In this way, the
algorithm produces a set of microstates that is represen-
tative of all possible microstates; this set is called the
typical set.

B. Simulation Paradigm

The aim of this experiment is to simulate the behaviour
of a phase transition at Tc. Therefore we need to make
many simulations of a spin lattice kept in thermal equi-
librium at temperatures near the predicted Tc value. We
ran the simulation at 281 different temperatures (be-
tween 1.20 and 4.00, at increments of 0.01). We used
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a 100 by 100 grid of spins, which wraps around itself in
both the vertical and horizontal directions (so that the
first and the hundredth spins are neighbours). In effect,
therefore, our lattice of spins is laid out on the surface of
a torus. Before beginning the Metropolis sampling where
we actually collect data on the energy, magnetization and
spin correlation coefficient, it is necessary to undergo a
process of “annealing”. This involves starting the simula-
tion at a temperature much higher than Tc and gradually
reducing the temperature to Tmin. While the tempera-
ture is being reduced, we cycle through a large number
of microstates (we chose 60,000), before arriving at T0.
The purpose of annealing is to make sure the system is
in a thermodynamically probable region of the space of
all microstates. After annealing, but before taking mea-
surements, the simulation also cycled through 40,000 mi-
crostates at T0. This is called burning-in, and the goal
is to prevent the system from becoming stuck in a region
which is a local minimum of energy of the system, but
not a global minimum and therefore not representative of
the typical set of microstates we would expect to occur.
Finally, at each temperature we took a sample of 10,000
microstates at which the Energy and Magnetization were
measured, and 100 microstates at which 〈σ(0)σ(x)〉 (the
spin correlation coefficient) was measured. Refer to the
appendix for a summary of the parameters used in the
simulation.

III. RESULTS

A. Determination of Tc

The data we procured from our implementation of the
Metropolis algorithm, as described in the methods sec-
tion, is shown in figures 1 through 6. Our first aim was to
calculate the critical temperature, Tc, since that would
inform our later calculations of the critical exponents.
To do this, we plotted four quantities as a function of
temperature: the magnetization per site M , the specific
heat capacity cv, the magnetic susceptibility χ, and the
correlation length ξ.

The magnetization plot (figure 1) indicates a phase
transition at Tc, where the system experiences a rapid
change in properties. For the magnetization per site,
specific heat capacity, and energy per site, shown in fig-
ures 1, 2, and 3 respectively, we were able to plot our
experimental results alongside Lars Onsager’s theoreti-
cal predictions of these quantities. Onsager’s solution for
the 2D Ising model predicts a magnetization per site of

M(T ) =
(

1− [sinh(2/T )]−4
)1/8

(10)

The specific heat capacity is given by

cv =
∂E

∂T
(11)

FIG. 1. Magnetization per site M vs. temperature T (J/kB)
simulated on an N = 100 lattice. Onsager’s exact solution for
M(T ) is plotted in red alongside our data. Critical behavior
in the experimental data occurs at Tc = 2.2 ± 0.1. Inset:
magnetization per site vs. reduced temperature plotted on a
log-log scale with a line of best fit plotted in red.

where,

E(T ) = −2tanh(
2

T
)− sinh2(2/T )− 1

sinh(2/T )cosh(2/T )

[
2

π
K1(κ)− 1

]
(12)

κ = 2
sinh(2/T )

cosh2(2/T )
(13)

K1(κ) =

∫ π/2

0

dφ√
1− κ2sin2φ

(14)

Our experimental data (in blue) did not align entirely
with the theoretical values (in red), which can be at-
tributed to the fact that we are working with a lattice
of finite size. This can be seen in all three plots that in-
cluded both experimental and theoretical results: M(T ),
cv(T ), and E(T ). The finite-ness of our lattice also affects
the critical temperature: Onsager’s equations predict a
critical temperature of Tc ≈ 2.269, which is where the red
lines experience second-order discontinuities in figures 1
through 3. Our data exhibits such behavior slightly be-
low that temperature. In the plots of χ and ξ, this can
be observed as a left-shift (with respect to T = 2.269) of
the peak. In M , a left-shift of the rapid decline in mag-
netization, and in E, a left-shift of the inversion point,
where the curve switches from convex to concave.

Through a visual inspection of each plot, we noted the
location of the extremal behavior (rapid decline for M ,
maxima for cv, χ, and ξ) and the corresponding uncer-
tainty. This data is presented in the table below:
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FIG. 2. Specific heat capacity cv vs. temperature T (J/kB)
simulated on an N = 100 lattice. Onsager’s exact solution
for cv(T ) is plotted in red alongside our data. A maximum
occurs at Tc = 2.2 ± 0.1. Inset left: specific heat capacity
vs. reduced temperature plotted for T > Tc on a log-log
scale. Line of best fit plotted in red. Inset right: specific
heat capacity vs. reduced temperature plotted for T < Tc on
a log-log scale. Line of best fit plotted in red.

FIG. 3. Energy per site E vs. temperature T (J/kB) simu-
lated on an N = 100 lattice. Onsager’s theoretical prediction
(equation 15) is plotted in red.

Location of critical behavior
Quantity Tc δTc

M 2.2 0.1
cv 2.2 0.1
χ 2.3 0.1
ξ 2.22 0.02

Averaging the Tc for each of these four plots, we deter-

FIG. 4. Magnetic susceptibility χ vs. temperature T (J/kB)
simulated on an N = 100 lattice. A maximum occurs at
Tc = 2.3±0.1. Inset left: magnetic susceptibility vs. reduced
temperature plotted for T < Tc on a log-log scale. Line of
best fit plotted in red. Inset right: magnetic susceptibility
vs. reduced temperature plotted for T > Tc on a log-log scale.
Line of best fit plotted in red.

FIG. 5. Correlation length ξ (measured in units of x, the
lattice site index) vs. temperature T (J/kB) simulated on an
N = 100 lattice. A maximum occurs at Tc ≈ 2.22 ± 0.02.
Inset: correlation length vs. reduced temperature plotted
for T > Tc on a log-log scale. Line of best fit plotted in red.

mined the critical temperature for our 100 × 100 lattice
to be:

Tc = 2.23± 0.08 (15)

Note that the theoretical value of Tc = 2.269 falls
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within the error of the Tc that we calculated.
Two other quantities we measured in this simulation

were the correlation function R(x) (figure 6) and the cor-
relation length ξ (figure 5). The correlation function is
defined as

R(x) = 〈σ(0)σ(x)〉 (16)

meaning it is the expected value (the average over the
whole lattice) of the product of a particle’s spin and the
spin of a particle x lattice grid units away. We expect
the correlation function to follow an inverse exponential
distribution:

R(x) ∝ e−
x
ξ (17)

From this we can see that ξ is a measure of how quickly
the correlation between spins dies off as a function of
distance. We expect that ξ will vary as a function of
temperature, however since it is not a first derivative of
a quantity with respect to temperature, we don’t expect
to see a divergence at Tc.

B. Determination of critical exponents

In analyzing the behaviour of various thermodynamic
quantities near the critical temperature it is useful to
introduce the reduced temperature t:

t =
T − Tc
T

(18)

The reduced temperature is useful because the theory
of critical phenomena tells us that near Tc heat capacity,
magnetic susceptibility, correlation length and magneti-
zation all follow power law distributions as a function of
|t|.

Using our estimate for Tc we plotted our thermody-
namic variables against the reduced temperature. For
cv and χ, we plotted the behavior above and below Tc
on separate log-log plots (figures 2 and 4, respectively).
For M and ξ, the critical exponents were only valid for
temperatures above Tc, so only one plot was necessary
(figures 1 and 5, respectively). We plotted our data on
a log-log scale to demonstrate the power-law behavior of
the variables.

For each variable, we found a line of best fit (along with
the corresponding χ2 value), from which we extracted our
critical exponents. To obtain an uncertainty for our criti-
cal exponents, we varied them until the χ2 value doubled,
and then marked that variation as our uncertainty. The
critical exponents we obtained are presented in table 1.

Critical Behaviour near Tc
Relationship Theoretical Value Our result

cv ∝ |t|−α α = 0 0± 0.1

χ ∝ |t|−γ γ = 7/4 1.8± 0.2

ξ ∝ |t|−ν ν = 1 0.27± 0.03

|M | ∝ |t|β β = 1/8 0.4± 0.2

TABLE I. Showing the expected critical behaviour of ther-
modynamic quantities near Tc alongside our experimental re-
sults. The fact that α = 0 indicates that cv has logarithmic
scaling rather than power-law scaling. Note that the relations
for cv, χ and ξ are expected to hold both above and below
Tc, while the relationship for |M | is relevant only below Tc.
Above Tc we expect the magnetization to be 0 as the spins
are randomly aligned.3

FIG. 6. Correlation strength 〈σ(0)σ(x)〉 vs. distance x (mea-
sured in discrete lattice indices) simulated on an N = 100
lattice. Inset: correlation strength vs. distance plotted on
log-log scale with a line of best fit (for x < 20) plotted in red.

C. Calculation of Uncertainties

The uncertainties in E, M and R(x), at a specific tem-
perature, are calculated simply as the standard deviation
of all of the measurements of these quantities taken for
each lattice configuration sampled. Equation 6 tells us
that cv is proportional to the variance of E. Therefore,
to calculate an uncertainty for cv we had to estimate an
uncertainty in the variance of E. This was done by divid-
ing the 10,000 measurements of E taken at each temper-
ature into 200 separate bins of 50 measurements. If we
define the random variable BinV ar(E) as the variance
of a particular 50-member bin of Energy values, then we
calculate the uncertainty of our variance of E from the
variance of the 200 measurements of BinVar(E) that are
made. Thus, the uncertainty in cv is

δ(cv) =
1

kBT 2

√
V ar(BinV ar(E)) (19)

An identical method was used to calculate σχ from the
mean values and variances of M at each temperature.

Finally, ξ was estimated from the slope of the graph of
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logR(x) vs. x. If we call the slope of this regression line
k, which has a standard deviation δk, then by 17

ξ =
−1

k
(20)

δ(ξ) = ξ2δk (21)

IV. CONCLUSION

The data presented here demonstrate the success of
numerical methods in producing data that agree with
theoretical predictions. We observed critical behavior,
indicating a phase transition, at a temperature of T =
2.23±0.08. Our calculation of the critical exponents dif-
fered slightly from the theoretical predictions of Onsager.
The exponents for M , cv, and χ were reasonably close to
predicted values (within error bars even, for χ and cv);
we attributed that deviation to the fact that our lattice
was of finite size while the theoretical values are for a
lattice of infinite size.

The critical exponent we calculated for ξ was not near
the predicted value. This is not totally surprising, since
the raw data for spin correlation output by the simulation
showed that at almost every temperature the correlation
coefficient went and stayed below 0 at a certain distance
x (this can be seen for T = 2.23 in 6). Not only is this
indicative that the spin correlation is behaving not en-
tirely as expected (we would expect the correlation to go
to zero at far distances, not that particle spins would be
anti-correlated), but it also introduced greater error in
the calculation of ξ, as it meant there were fewer positive
data points at each temperature for which logR(x) could
be calculated. The cause of this phenomenon is not clear,

but it may be worth testing with a larger lattice size to
see if it may be a finite-size effect. Furthermore, as it is
computationally demanding to calculate R(x), we only
did so for 100 microstates sampled. It is quite possible
that this is not large enough to attain a representative
sample of the typical set of microstates, which could ex-
plain some degree of the unexpected behavior observed
for ξ.
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VI. APPENDIX

Simulation Parameters
N 100

Tmin(J/kB) 1.20
Tmax(J/kB) 4.00
Tstep(J/kB) 0.01

T0(anneal) (J/kB) 5.0
steps (anneal) 60 000
steps (burn in) 40 000
steps (for E, M) 10 000

steps (for 〈σ(0)σ(x)〉) 100
flip ratio 0.2

TABLE II. Showing the values of various parameters used in
our simulation. The meaning of these parameters is described
in the methods section, part b ”Simulation Paradigm.”


